Lower and Upper Bounds on Obtaining
نویسندگان
چکیده
History independent data structures, presented by Miccian-cio, are data structures that possess a strong security property: even if an intruder manages to get a copy of the data structure, the memory layout of the structure yields no additional information on the data structure beyond its content. In particular, the history of operations applied on the structure is not visible in its memory layout. Naor and Teague proposed a stronger notion of history independence in which the intruder may break into the system several times without being noticed and still obtain no additional information from reading the memory layout of the data structure. An open question posed by Naor and Teague is whether these two notions are equally hard to obtain. In this paper we provide a separation between the two requirements for comparison based algorithms. We show very strong lower bounds for obtaining the stronger notion of history independence for a large class of data structures, including, for example, the heap and the queue abstract data structures. We also provide complementary upper bounds showing that the heap abstract data structure may be made weakly history independent in the comparison based model without incurring any additional (asymptotic) cost on any of its operations. (A similar result is easy for the queue.) Thus, we obtain the rst separation between the two notions of history independence. The gap we obtain is exponential: some operations may be executed in logarithmic time (or even in constant time) with the weaker deenition, but require linear time with the stronger deenition.
منابع مشابه
Upper and lower bounds of symmetric division deg index
Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...
متن کاملEstimating Upper and Lower Bounds For Industry Efficiency With Unknown Technology
With a brief review of the studies on the industry in Data Envelopment Analysis (DEA) framework, the present paper proposes inner and outer technologies when only some basic information is available about the technology. Furthermore, applying Linear Programming techniques, it also determines lower and upper bounds for directional distance function (DDF) measure, overall and allocative efficienc...
متن کاملAn Upper Bound on the First Zagreb Index in Trees
In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.
متن کاملUpper and lower bounds for numerical radii of block shifts
For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...
متن کاملBounds on $m_r(2,29)$
An $(n, r)$-arc is a set of $n$ points of a projective plane such that some $r$, but no $r+1$ of them, are collinear. The maximum size of an $(n, r)$-arc in PG(2, q) is denoted by $m_r(2,q)$. In this paper thirteen new $(n, r)$-arc in PG(2,,29) and a table with the best known lower and upper bounds on $m_r(2,29)$ are presented. The results are obtained by non-exhaustive local computer search.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003